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Secondary flow induced by riblets
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The effects of riblets on one wall of a channel bounding fully developed turbulent
flow are investigated. Various perturbation elements including wires, fins and slots are
modelled in order to understand the effects of riblets. It is found that widely spaced
riblets, fins and wires create a substantial increase in turbulent activity just above the
element. These elements are also found to produce a remarkable pattern of secondary
mean flows consisting of matched pairs of streamwise vortices. The secondary flows
occur only if the bulk flow is turbulent and their characteristics depend on element
geometry. It is suggested that these secondary flows are strongly linked with the
increase in drag experienced by widely spaced riblets in experimental studies. The
secondary flows are probably caused by two-dimensional spanwise sloshing of the flow,
inherent in a turbulent boundary layer, interacting with the stream-aligned element.
This two-dimensional mechanism is investigated with a series of two-dimensional
simulations of sloshing flow over isolated elements. Grid resolution and domain size
checks are made throughout the investigation.

1. Introduction
It has been found experimentally that surfaces possessing ridges (riblets) are capable

of reducing turbulent flow skin friction. Effective riblets generally consist of streamwise
ridges having triangular, cusped, or rectangular cross-sections and, in fact, plastic film
having sub-millimetre-scale triangular riblets has been developed commercially for
surface application. Walsh (1990) and Coustols & Savill (1992) provide comprehensive
reviews of the experimental and early computational studies on the riblet drag
reduction effect. Walsh suggests, as have others (see Bacher & Smith 1985; Bechert
et al. 1986, 1989, 1997b; Bechert & Bartenwerfer 1989; Coustols & Savill 1992 and
Luchini et al. 1991), that riblets work by effectively providing an enhanced cross-
stream resistance to the near-wall motion above the riblet crests.

While riblets decrease drag in some cases they increase it in others and, overall,
experimental drag reduction obtained from riblet surfaces has been disappointing –
generally less than 10%. While riblets roughly 10 wall units high and spaced by 10–30
wall units usually produce a drag reduction, if they are taller or more widely spaced
they most often produce a drag increase or at least no drag benefit.

Recent computational work using direct numerical simulation (DNS) provides
detailed flow statistics unavailable experimentally. The conclusions drawn from the
simulations have been generally similar to those reached based on experiments alone
due to the complicated physics involved; there are many effects associated with (and
perhaps multiple causes of) the drag reduction.
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Choi, Moin & Kim (1991) used a finite difference approach to simulate steady
laminar flow over riblets. They found that the drag increase characteristic of laminar
flow became more pronounced as the ribs projected further into their channel. They
also argued that there should be no secondary flow (wall normal or spanwise motion)
associated with such laminar flow. Choi, Moin & Kim (1993) have also extended
their calculations to turbulent flow and found general agreement with experiments.
While they report only minor differences between the 45◦ and 60◦ geometries, there
were interesting findings from increasing the crest-to-crest spacing. Of particular
interest, they found that over 60◦ riblets spaced at 20 wall units the turbulence
intensity and Reynolds shear stresses are reduced while over larger drag-increasing
riblets spaced at 40 wall units, these quantities are increased. They attribute the drag
increase to the ability of the streamwise vortices to lie in the larger riblet valleys thus
exposing a larger surface area to the vortex-induced sweep motion. They also find a
secondary flow consisting of a vortex pair which produces upflow over rib crests and
downflow in the valleys and they note the similarity to secondary flows in ducts of
non-circular cross-section. The larger riblets had much stronger secondary flows than
did the smaller drag-reducing riblets. Choi et al. conclude that it is unclear how the
secondary flow affects drag performance.

Chu, Henderson & Karniadakis (1992) and Chu & Karniadakis (1993) provide
detailed turbulence statistics and find that all three components of turbulence intensity
and the Reynolds shear stress are reduced above both riblet crests and valleys in the
drag-reducing regime. They found a qualitative increase in streak spacing due to
riblets. They also describe transient secondary flows in riblet valleys due to the
presence of large streamwise boundary layer vortices and suggest that the ‘lateral
resistance offered by the riblets produces secondary flow and vortical structures in
the riblet valleys’. They do not, however, explicitly describe mean secondary flows.

Crawford (1994) used quadrant analysis and confirmed that the effect of drag-
reducing riblets is confined to the buffer region immediately above the riblet crests.
She finds that the intensity of the burst and sweep events is diminished over a ribbed
surface and concludes that a mean flow up away from a riblet crest would reduce
the riblet drag. Crawford & Karniadakis (1996) provide a Reynolds stress analysis of
three riblet configurations and find secondary flows like those of Choi et al. (1993).

Goldstein, Handler & Sirovich (1995) used DNS to confirm that cross-flow damping
near riblet crests causes the upward displacement of the streamwise streaks and
vortices which in turn produces a drag-reduction. They also found that drag reducing
riblets tend to pin the spanwise flow separation and re-attachment points on riblet
crests. The idea would then arise that riblets with a spacing corresponding to the mean
streamwise vortex spacing might pin the cross-flow separation/re-attachment sites and
stabilize the vortices. Stable vortices might not tend to lift off the surface and cause the
burst–sweep events responsible for much of the viscous drag. In fact, if the riblets were
spaced slightly wider than the vortices, one might think that the pinning of stagnation
stream surfaces would increase the mean vortex spacing and hence reduce the drag.
Yet, these suppositions are misleading; widely spaced riblets do not reduce drag.

There have also been some recently published interesting experimental results. Park
& Wallace (1993) used large riblets in a low-speed wind tunnel and made hot-wire
measurements all the way into the riblet valleys. They found that for a drag-reducing
riblet configuration the valley flow is slow and almost laminar and that turbulence
intensities can be increased over the crests while decreased over the valleys. Suzuki
& Kasagi (1994) used particle tracking velocimetry over riblets in both a drag-
reducing (S+ = 15) and a drag-neutral (S+ = 31) configuration where S+ is riblet
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spacing, defined below. Whereas the S+ = 15 riblets reduced all three r.m.s. velocity
fluctuations, the S+ = 31 case only reduced the streamwise component but increased
the other two. Of particular note, Suzuki & Kasagi find that the widely spaced riblets
induce a modest mean secondary flow while the more closely spaced riblets produced
only an extremely weak secondary flow. These secondary flows appear consistent with
the three Reynolds stresses they obtain and the trends they find agree with those
found by the computations mentioned above.

While Goldstein et al. (1995) showed that progressively more widely spaced regions
of cross-flow damping produce a diminishing drag benefit, it remains unclear why
widely spaced real riblets should produce a drag increase. Perhaps an additional
physical mechanism comes into play as the riblets become isolated. For example,
small riblets having heights H+ ≈ 10 (H+ = hu∗/ν for height h, friction velocity u∗,
and kinematic viscosity ν) and spacings S+ of 100 or more (S+ = su∗/ν for spacing
s) are nearly representative of single isolated ribs rather than an array of interacting
elements. Riblets spaced more widely than a few streak spacings should not perceive
the presence of their neighbours while closely spaced ribs should interact. That is,
there ought be a transitional spacing, perhaps demarcated by the change in the skin
friction drag (from beneficial to detrimental), where the physics of the flow changes
from that of closely interacting elements to that of independent elements.

The above work concentrated on determining why some riblets work. One of the
objectives of the present paper is to answer the (perhaps) easier question of why riblets
stop working when they are spaced too widely. One might then approach the design
of better surface textures from a different perspective. None of the work mentioned
above provides a complete physical explanation of what changes in a flow as the riblet
spacing is increased from a regime of closely interacting elements to that of isolated
elements. The present paper is an exploration of the effects of riblet spacing and
geometry on the physics of a turbulent boundary layer flow. We first briefly describe
the computational method (§2). Section 3 presents the results of three separate simu-
lations of flow over riblets spaced by S+ = 23, 62.8, and 375. To elucidate the physical
mechanisms which cause the various phenomena observed over riblets, particularly
the causes of mean secondary flows, in §4 we examine flow over other longitudinal
isolated near-surface elements, namely slots, wires and fins. We argue that the sec-
ondary flows are primarily due neither to a vorticity tilting mechanism nor to simply
some form of Prandtl’s secondary flow of the second kind. These interesting secondary
flows are the most important feature of the present work and they are discussed in
terms of spanwise two-dimensional sloshing flow over surface elements in §5.

2. The computational method
The present work uses an unconventional computational approach – solid surfaces

are modelled by applying a body force to the flow so as to bring the flow to rest on
a virtual surface. This approach for creating a virtual solid surface has been shown
(Goldstein, Handler & Sirovich 1993b) to be sufficiently flexible and efficient to model
laminar and turbulent flow over complicated geometries. That work also provides a
discussion of the numerical stability of the method. Goldstein et al. (1995) provides
a more detailed review of the virtual surface approach as well as grid resolution
studies of laminar flow over riblets, an examination of the sensitivity of the solution
to various smoothing parameters, and an in-depth analysis of turbulent flow over a
virtual flat plate, and arrays of riblets, wires, and damping elements. Hence, only a
brief summary of the virtual surface approach will now be given.
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The basis of the virtual surface model is that the solid being modelled is defined by
a set of boundary points which exist within a region also containing a fixed (Eulerian)
mesh on which the flow equations are solved. The boundary points exert a body force
on the fluid such that the flow comes to rest on the boundary. The fluid mediates
the inter-point forces. A key accomplishment of the present approach is that flows
around complex boundary geometries are reduced to ones which are fully rectilinear
and hence are amenable to spectral methods. The virtual surface approach imposes
only a small computational overhead (roughly 5% of the computational time in the
calculations presented here) and little in the way of a coding burden. On the other
hand, the introduction of a localized force field into a spectral approach detracts from
the accuracy of the approach and grid convergence studies become more important.

For present purposes the incompressible Navier–Stokes equations with an external
force field are written as follows:

∂U

∂t
= U × Ω − ∇(p/ρ+ 1

2
(U ·U )) + ν∇2U + f, (2.1a)

and

∇ ·U = 0. (2.1b)

Here, t is time, U = (U,V ,W ) is the velocity in rectangular coordinates (x, y, z), Ω is
the vorticity, p is the pressure, ρ is the density, and ν is the kinematic viscosity. The
force f, which is used to generate a virtual surface, is given by

f(x, t; xs) = g(x, t)δ(x− xs), (2.2)

where the position vector xs locates the bounding surface, g(x, t) is a feedback forcing
given in Goldstein et al. (1995), and δ is the three-dimensional delta function. Potential
difficulties associated with the singular nature of the force field were addressed in
Goldstein et al. (1993b, 1995). It is not necessary to bring the flow to rest within a
solid. In fact, fluid will in general flow below the modelled riblet surface (inside the
solid) while the velocity is forced to be zero on the riblet surface itself.

A spectral method (Kim, Moin & Moser 1987; Handler, Hendricks & Leighton
1989) is used to solve equations (2.1a, b). We consider a channel, periodic in the
streamwise (x) and spanwise directions (z) and bounded by impermeable flat walls
in the vertical direction (y). Flow quantities are represented by Fourier expansions in
the horizontal (x, z)-plane and a Chebyshev expansion in the wall normal direction.

3. Turbulent flow over riblets
Riblets having a triangular or cusped U cross-section, a peak to peak spacing,

S+, of 10 to 20, and a height, H+, of of 5 to 15 are found experimentally to be
most effective in reducing drag (Walsh 1990). We first examine the turbulent flow
over cusped riblets having H+ = 8.9 and three different values of S+. The channel
modelled here has the orientation seen in figure 1. In the bulk of the domain between
the ribbed surface and the top boundary a constant pressure gradient, G, is applied
in the x-direction. The equations of motion (2.1a, b) are scaled in such a way
that the non-dimensional pressure gradient in a channel without riblets is given by
G = (R∗/Rcl)

2, where R∗ = u∗yl/2/ν is the friction Reynolds number, Rcl = uclyl/2/ν
is the centreline Reynolds number, yl/2 is the channel half-height, ucl is the centreline

velocity, u∗ is given by u∗ = (τw/ρ)1/2, and τw is the shear stress at the wall. The value
of G is chosen so that the steady-state value of R∗ is known a priori (≈ 125) and Rcl
is about 2200.
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Figure 1. Geometry for the simulation of channel flow between two impermeable boundaries and
containing a virtual riblet surface. A uniform pressure gradient is applied above the riblet and a
pressure gradient of opposite sign is applied below. Forces are applied to riblet surface points to
create a no-slip surface.

Accurate simulation of flow over riblets requires that each rib cross-section be rep-
resented by at least several grid points. As will be seen below, large-scale secondary
flows may occur and the flow field domain must be large enough to capture them. The
riblets may also stabilize the streamwise streaks and thereby increase the streamwise
extent of velocity correlations beyond that found in flat-plate boundary layers. Hence,
the minimum channel of Jimenez & Moin (1991) for modelling sustained turbulence
(roughly 250–350 wall units streamwise and 100 spanwise) is probably substantially
too small. The present riblet simulations utilize nominal dimensions of 1875:250:375
viscous units in x:y:z as safe minimum estimates; these lengths are felt to be sufficient
to capture the dominant flow physics. When secondary flows with a large spanwise
extent are investigated, the domain width is varied to ensure domain size indepen-
dence. Because of the severe resolution and temporal requirements implied by this
discussion, it has been feasible to perform only a few detailed grid resolution studies
of turbulent flow.

One of the quantities of interest will be the drag ratio, DR, between the ribbed
wall and the opposing flat wall. The drag on the ribbed surface can be computed at
any time from an instantaneous momentum balance involving the rate of change of
momentum, the drag on the flat surface (both of which can be computed precisely at
any instant), and the pressure gradient force.

In this section are presented flow results for three different riblet spacings of S+ =
23, 62.8, and 375. For the first and last configurations, progressive grid-doubling
convergence studies were run for fully turbulent flow. The S+ = 23 riblets produce
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the expected drag decrease while the other two configurations produce a small drag
increase. All the riblets are small and of the same shape; only the amount of flat
surface between the ribs is varied.

3.1. Drag-reducing configuration

Riblets are created by applying the force field along a sequence of grid sites near
the lower channel boundary (figure 1) which form a cusped shape due to the cosine
grid. For the S+ = 23 configuration at the lowest resolution (case 1) the peak-to-peak
spacing of the ribs is 8 grid sites (12 sites on the 3/2’s de-aliasing grid), the ribs are
seven grid sites high, and there are 16 riblets along the channel width.

There is a small space between the shear-free lower flow field boundary and the
riblet no-slip surface. In this space a force in the −x-direction, Grev , as described in
Goldstein et al. (1993b, 1995), is applied to create a flow inside the ribs that reduces
the kinks that otherwise develop in the mean velocity profile. The value of Grev is
small (−16G) below the rib peaks and large (−120G) below the valleys. These values
as well as other run parameters for all turbulent runs are given in table 1.

The simulation begins with the abrupt insertion of the ribbed virtual surface into
an equilibrium turbulent channel flow followed by the relaxation of the flow over
several large eddy turn-over times, Te = 2yl/2/(u

′)max, where (u′)max is the maximum
root-mean-square streamwise turbulence intensity. (The flow was usually allowed to
relax for more than 10 000 time steps or about 7.7Te.) The autocorrelation of the
drag ratio was used to confirm the number of time steps between independent flow
field realizations (24 realizations in this simulation). The total integration time was
T+ = 7567 where T+ = (Nstep∆t)u

∗2/ν, and Nstep∆t is the computational time. The
time step used is ∆tu∗2/ν = 0.076.

Typical instantaneous results are shown in figure 2. Contours of constant streamwise
velocity and enstrophy are shown along with velocity vectors in the (y, z) and (x, z)-
planes. There is ordinary turbulent channel flow in the bulk of the domain indicated
by streamwise vortices which draw slow-moving fluid away from the walls (creating
low-speed streaks, figure 2c) and bring high-speed fluid toward the walls. Such vortices
are known to persist near a wall (Robinson 1991; Brooke & Hanratty 1993; Bernard,
Thomas & Hander 1993). It is evident in this snapshot that there are few easily
apparent qualitative differences between the structures above the riblets and near the
flat wall. This is as expected based on the work cited in §1.

To display detailed mean flow statistics we first average in the x-direction and time.
We then average over all of the 16 riblets and once more across the riblet centreline.
Figure 3 provides contours of several properties over an average riblet along with
velocity vectors in the (y, z)-plane (figure 3a). Also shown for comparison are the
contours of the same quantities found over the opposite flat wall. Ū denotes the local
mean velocity, u′, v′, and w′ indicate root-mean-square fluctuating velocities while u, v,
and w indicate fluctuating velocities. In addition, length scales made non-dimensional
by the viscous scale l∗ (l∗ ≡ ν/u∗) will be denoted by a + superscript, e.g. y+ ≡ y/l∗
where the height y is measured with respect to the flat wall or the riblet valley, as
appropriate. The viscous scales used in the contour plots (u∗ and l∗) are nominal
values for a similar channel having two flat walls.

In figure 3(a) one sees that the mean streamwise velocity contours arch up over
the riblet and are closely spaced over the crest while being widely spaced over the
valley. This corresponds to high shear stress on the rib crest and low stress in the

† Animations are available on the Web at www.ae.utexas.edu/˜tuan/research.html.
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valley as has been discussed by nearly every earlier investigator. In figure 3(b–d) the
turbulence intensities show a general reduction in fluctuating velocities both over the
valleys and the crests and that the region of peak fluctuation moves away from the
wall. There is a region of particularly small v′ values in the riblet valleys as well as
a thickening of the region of low u′ and w′ along nearly the whole riblet surface. We
also note that data in figure 3(a–d) agree remarkably well with the results for the
S+ ≈ 20 case of Choi et al. (1993). The Reynolds shear stress (figure 3e) shows a
corresponding reduction in turbulent vertical mixing of streamwise momentum near
the riblet (compared to the flat surface), particularly over the valley. The other two
Reynolds stresses (figure 3 f, g) show that in the vicinity of the riblet tip there is a
correlation between spanwise motion and both streamwise and wall normal motion.
The cause of this correlation is that during a cross-flow fluctuation spanwise flow is
deflected up by the windward side of the rib and is thus associated with both upflow
and increased streamwise velocity. We will see shortly that figure 3( f ) and the velocity
vectors in figure 3(a) suffer from a limited grid resolution.

A quantitative measure of the spanwise length scale defined by the low-speed
streaks, λ+, can be determined by computing the correlation

Ruu(∆z) =
u(x, y, z)u(x, y, z + ∆z)

u′2
(3.1)

and using the definition that the streak spacing is twice the spanwise distance at
which Ruu(∆z) attains an absolute minimum. The height of this minimum (y+

Ruumin
) is

taken as representative of the mean height of the streaks.
The spanwise covariance Ruu(∆z) is shown at different heights above the walls in

figure 4. The streak spacing obtained from the spanwise covariance near both walls
is the same: 98.0 for the ribbed side and 99.6 for the smooth side. The height of the
streaks above the two walls is different. Over the ribbed wall the covariance minimum
occurs at about y+ = 20.1 whereas over the flat wall the minimum occurs 8.1l∗ lower
at y+ = 12.0. Hence, the riblets push the streaks away from the wall by an amount
about equal to the height of the riblets themselves. Streak height values are estimated
to be accurate to only about ±3l∗.

For this riblet configuration, experiments (Walsh 1990) indicate only a small 1–
5% drag reduction. Our simulation yielded a 3.2% ±1.5% decrease where the error
bars indicate a 90% confidence interval assuming a normal distribution for the 24
independent realizations. Hence, the present drag results agree with the experiments.

But are these results sensitive to grid resolution? If the grid resolution is reduced
by a factor of two in both the wall normal and spanwise directions with respect
to the above nominal case, substantial Gibbs oscillations develop and the solution
near the riblets is extremely under-resolved. This might be expected since each riblet
would be represented with only 4 grid sites. Near the opposite flat wall, however, the
solution remains surprisingly reasonable. On the other hand, if the grid resolution is
doubled in both y and z with respect to the nominal case 1 run, the results are seen in

Figure 3. Mean contours over an S+ = 23, H+ = 8.7 riblet array from a 64× 65× 128 simulation
(case 1). (a) Mean streamwise velocity and velocity vectors. The 3/2’s computational grid used for
de-aliasing and on which the virtual surface is created is indicated overlaying the riblet. Note the
lack of a coherent secondary flow compared to the weak Gibbs oscillation. A vector of length u∗/5
is seen below the figure for scale. (b–d) Root-mean-square u, v, and w velocities, (e–g) negative
Reynolds stresses 〈−uv〉, 〈−uw〉, and 〈−vw〉. Shown for comparison are the corresponding mean
contours for the opposte flat wall (except for 〈−uw〉, and 〈−vw〉 which should be zero).
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Figure 4. Ruu(∆z) autocorrelation for several different distances from the wall in case 1.
(a) Near the riblet side. (b) Near the smooth side.

figure 5. This simulation, case 2, was run to T+ = 7503 (22 independent realizations)
at eight times greater computational expense per realization than for the nominal
case. Nonetheless, the results in figure 5 show virtually the same quantitative features
as those presented in figure 3. The 〈−uw〉 contours, which are distorted by the Gibbs
oscillations in the low-resolution case, show a clear but weak correlation beside the
rib tip in figure 5( f ). The drag ratio for this higher resolution run is 0.954± 0.016 in
agreement with the earlier result.

Finally, to prove that case 2 itself is fully resolved we again double the y and z reso-
lution in case 3 (for which the x:y:z resolution is 48:257:512) but can only afford to run
to T+ = 1903 (2200 CPU hours on a Cray J90). Nonetheless, the results (not shown)
are virtually indistinguishable from those of case 2 – there are no further changes in
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the velocity vectors or the 〈−uw〉 contours. Hence, we obtain full grid convergence with
a spatial resolution between that of cases 1 and 2. Also, essentially all of the physics
is captured by the case 1 resolution except that the weak mean secondary flows (see
below) and the small values of 〈−uw〉 are obscured by the Gibbs oscillations at low
resolution. As will be seen later, stronger mean flows are not obscured by Gibbs oscil-
lations and we will choose to utilize the nominal case 1 resolution out of expediency.

Note that in figure 5(a) there exists a clear but weak pair of streamwise vortices
surrounding the riblet tip. The vortex cores are 4l∗ above the rib crest and are spaced
by 11l∗. Such vortices cause a weak mean upflow (maximum of V̄ /u∗ ≈ 0.030) directly
above the riblet crest and a downflow of about the same magnitude over the valley
centres. As described above, these vortices are so weak in this closely spaced riblet case
that they could not be clearly distinguished from the residual Gibbs oscillations in
figure 3(a). Choi et al. (1993), Suzuki & Kasagi (1994), and Crawford & Karniadakis
(1996) also found such weak vortices over their riblets. The vortex pair is clearly visible
through time averaging; in animations of the flow one rarely sees a real vortex pair
surrounding one of these riblet tips. Rather, there is occasionally an isolated vortex on
one side or the other. In §§ 4 and 5 we discuss different physical mechanisms for the
creation of such secondary flows. For now, however, we continue with our discussion
of the effects of varying riblet spacing.

3.2. Drag increasing configuration

Next consider what happens as the spacing between riblets is increased to S+ = 62.8
in case 4. The riblet shape and H+ are held fixed: the flat region in the valleys is
simply made larger thereby permitting only 6 riblets in the channel. The simulation
parameters are otherwise the same as case 1. The crest-to-crest rib spacing is chosen
to be slightly larger than the mean vortex spacing in a flat-plate boundary layer.

Figure 6 presents data corresponding to those in figures 3 and 5. There is again
a clear arching up of the mean streamwise velocity contours over the riblet crest
(figure 6a). What is also immediately obvious is that there is greater turbulent activity
(figure 6b–d) over these more widely spaced riblets as revealed in the turbulence
intensity contours. The shapes of the contours show a remarkable similarity to those
of the S+ ≈ 40 large 60◦ riblets of Choi et al. (1993) (their figure 12a). The regions of
reduced turbulence very close to the riblet surface are perceptibly thinner in figure 6
than in figure 5. The turbulence intensities appear to almost recover the smooth wall
profile in the valley midway between adjacent riblets. There is an increase in Reynolds
shear stress (figure 6e) over the riblet and a small region of low 〈−uv〉 on the riblet
flanks. The other two Reynolds stresses (figure 6 f, g) are two to four times greater
than in the previous case and again show that in the vicinity of the riblet tip there is a
correlation between spanwise motion and both streamwise and wall normal motion.

As others have found (Walsh 1990) there is an increased skin friction drag in
comparison to the flat-plate case: DR = 1.04 ± 0.02. The vectors of figure 6(a)
show a fairly large and strong pair of secondary vortices; the peak vertical velocity,
V̄ /u∗ ≈ 0.12u∗, is more than three times that found in figure 5. These vortices convect
low-speed fluid along the riblet surface up over the riblet crest and bring high-speed
fluid down toward the wall on either side of the riblet. The region of upflow is clearly
associated with increased levels of u′ and 〈−uv〉. While this mean vortex flow is only
an ensemble average of various flow field realizations, in animations one does find
the tendency for a pair of streamwise vortices to occasionally hover around the riblet
crests. This case 4 is in a sense transitional between closely coupled riblets (cases 1–3)
and isolated riblets (cases 5 and 6, below).



128 D. B. Goldstein and T.-C. Tuan

(a
)

12
0

10
0 80 60 40 20 0

–2
0

0
20

y
+

U
/u

*

u* /
5

z+
F

la
t

15 12 9 6 3 0

(b
)

12
0

10
0 80 60 40 20 0

–2
0

0
20

y
+

u′
/u

*

z+
F

la
t

2.
5

2.
0

1.
5

1.
0

0

(c
)

12
0

10
0 80 60 40 20 0

–2
0

0
20

y
+

v′
/u

*

z+
F

la
t

0.
6

0.
4

0.
2

0

(d
)

12
0

10
0 80 60 40 20 0

–2
0

0
20

12
0

10
0 80 60 40 20 0

y
+

w
′/u

*

z+
F

la
t

0.
8

0.
6

0.
4

0.
2

0

(e
)

12
0

10
0 80 60 40 20 0

–2
0

0
20

12
0

10
0 80 60 40 20 0

y
+

©
–u

vª
/u

*2

z+
F

la
t

0.
6

0.
4

0

(
f)

40 30 20 10 40 30 10

–2
0

0
20

y
+

z+

0.
2

©
–u

w
ª

/u
*2

(g
)

0 z+

0.
2

0.
1

0

©
–v

w
ª

/u
*2

–
0.

1

12
0

10
0 80 60 40 20 0

12
0

10
0 80 60 40 20 0

0.
5

12
0

10
0 80 60 40 20 0

0
–2

0
20

–
0.

2

0.
12

0.
06

0 –
0.

06

20
y

+

F
i
g
u
r
e
6
.

M
ea

n
co

n
to

u
rs

,
a
s

in
fi

g
u

re
3
,

fo
r
S

+
=

6
2
.8

,
ca

se
4
.

N
o

te
th

e
d

iff
er

en
t

g
re

y
sc

a
le

s
th

a
n

in
fi

g
u

re
3
.



Secondary flow induced by riblets 129

That the riblet crest spacing was set slightly larger than the mean vortex spacing
in a flat-plate boundary layer did not seem to force the vortex spacing to become
synchronized with crest spacing. That is, the mean streak spacing did not rise to 125.

3.3. Isolated Riblet

Finally, consider a simulation at nominal resolution of a single riblet along the lower
wall of the channel in case 5. Since the flow is periodic in z this is not a truly isolated
riblet but rather represents riblets having a crest-to-crest spacing equal to the box
width, 375l∗. Similar trends are seen in figure 7 as were found over the S+ = 62.8
riblets. Root-mean-square fluctuations are enhanced both above the riblet and ≈ 2H+

to either side. There continues to be a region of decreased 〈uv〉 directly on the riblet
flanks but an enhanced region over the crest. One sees, moreover, that the mean
contours return to the flat-wall values about 60–80 wall units to either side of the
riblet thereby delineating the spanwise extent of influence. That is, this H+ = 8.9
riblet is effectively isolated. Also, the vortex pair, at least over widely spaced riblets,
appears to be due to the influence solely of the riblet which the pair hovers above and
not to some cumulative effect of interacting riblets. The secondary flow associated
with the riblet is strong (V̄ /u∗ ≈ 0.32u∗). The regions of downwash are associated
with diminished velocity fluctuations and shear stress while upwash is associated
with increased velocity fluctuations and shear stress. There is only a slight increase
in viscous drag in comparison to the flat-plate case: DR = 1.012 ± 0.011. This is
as expected: as small riblets are spaced more widely they influence less of the plate
surface and the drag ratio should return to 1.0.

This configuration was also used to check the grid resolution. In figure 8 are
presented the results from a run (case 6) made at double the nominal resolution
in the spanwise and wall normal directions. The various quantities are nearly the
same within a distance of ≈ 8H+ to either side of the riblet where the influence of
secondary flow is the greatest. However, at this higher resolution it appears that there
are other weaker tertiary vortices which occur further from the riblet at about ±95l∗

and even ±155l∗. Even with the lower resolution in case 5 very weak tertiary vortices
are seen but they lie mostly beneath the main secondary pair. We note that while case
5 was run for a long time (T+ = 15 660), it was only possible to run case 6 for half as
long. Hence, case 6 still shows vestigial effects of ordinary streamwise vortices on the
opposite flat wall which are not much weaker than the tertiary flow. In that the tertiary
vortices in case 6 appear to weaken somewhat when a larger number of realizations are
averaged, it appears that there is probably little effect of resolution upon tertiary flow.

4. Turbulent flow over isolated elements
We have just seen that as the spacing between riblets increases four things of

interest occur: (i) the drag benefit of the riblets disappears, (ii) the turbulent activity
near and above the riblet increases, (iii) the secondary flow becomes much stronger
with the vortex cores rising higher and spreading apart, and (iv) tertiary flows may
occur. We suggest that the secondary flows are both indicative of and the cause of the
reduced performance of the widely spaced riblets. To see why, one must investigate
what causes the secondary flow. This section presents the results of simulations of
turbulent flow over three different types of longitudinal elements to isolate which
features of a riblet are most responsible for secondary flow. The next section (§5)
will present a two-dimensional flow model (in the y, z-plane) to explain many of the
phenomena observed in the full turbulent simulations.
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Consider the different ways one can view what a riblet does. Riblets can either be
thought of as a set of slots incised in a surface or as ridges projecting from a surface.
Section 3 examined the effect of an isolated longitudinal ridge on a turbulent flow.
Section 4.1 will consider the effect of an isolated slot on such a flow with particular
attention being paid to the nature of any associated secondary flows. Another way
to view a riblet is to note that much of its influence on the flow well above the wall
comes from the very crest of the ridge. Section 4.2 will investigate the nature of the
crest influence by replacing a whole riblet with a single wire where the crest would
have been. Section 4.3 first shows that a vertical fin produces nearly the same results
as a riblet. Then, to answer the question as to the physical cause of the secondary
flow, a vertical fin is modelled which provides no through-flow in z but allows velocity
slip in the y- and x-directions.

4.1. Turbulent flow along isolated slots

Consider flow along the length of a single slot (9.2l∗ deep and 27l∗ wide) having a
smooth contour like that of a riblet valley in cases 1–3. The slot is created in the same
manner as the riblets by applying the force field along a sequence of grid sites near
the lower channel boundary. Other simulation parameters are presented in table 1 for
this case 8.

Figure 9 provides contours of several x-averaged properties over the slot along with
velocity vectors in the (y, z)-plane. The flow in the slot is slow. While the Reynolds
shear stress is low, the other two Reynolds stresses show clear but weak maxima and
minima near the lips of the slot. The reason appears to be simply that when there is a
local positive w fluctuation, near the left lip fluid pours down into the slot while near
the right lip it flows up and out. Hence, in explanation of the 〈−vw〉 trends, there
is a correlation between positive w fluctuations and −v fluctuations on the left and
+v fluctuations on the right. A similar argument applies to negative w fluctuations
and similar reasoning explains the 〈−uw〉 contours. As seen in figure 9(d) spanwise
fluctuations clearly do penetrate into the valley. There is a region of diminished v′ on
the valley floor that is similar to that found in figures 3(c) and 5(c).

If we double the spatial resolution in y and z (case 9), figure 10 illustrates that the
contours are not much affected. In both cases 8 and 9 one finds weak secondary and
tertiary flows. In particular, in case 9 there is a secondary flow which is down into the
valley of the slot and out along the flanks very much like what occurs in the riblet
valleys of cases 2 and 3. No such secondary flow within the slot is discernible for case
8 due to the Gibbs oscillations.

Case 8 shows one other vortex pair at a large distance from the slot as well.
However, in that these runs were not long (to T+ = 16 198 for case 8 and T+ = 6767
for case 9) and the tertiary flows are weak (of comparable strength to the vestiges of
ordinary buffer layer vortices seen on the opposing flat walls), no definite conclusions
can be drawn about the nature of these tertiary flows.

It is not surprising that with so little effect of the slot on the mean flow features,
the drag on the slotted plate is virtually the same as on the flat wall and that the
streak spacing and height are unaffected (table 1). The results found for a smaller slot
(case 7, not shown) are generally similar (see table 1). Thus, we find that an isolated
slot used to model a riblet valley probably does induce a secondary flow comparable
to that over the valleys of closely spaced riblets. The slot also shows evidence in
the 〈−uw〉 and 〈−vw〉 contours of the effects of a low-Reynolds-number spanwise
sloshing motion.
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4.2. Turbulent flow along isolated wires

Next consider the effect of placing a single streamwise fine wire just above a flat
plate in a turbulent boundary layer. This is analogous to modelling the effect of
an isolated riblet crest. Kramer (1937) suggested that many such longitudinal wires
could shield the plate from turbulent fluctuations and Bechert et al. (1997a) tested
such an idea but found mostly a drag increase. Goldstein et al. (1995) presented
results from a simulation of Kramer’s idea which showed that for one configuration
of multiple wires (S+ = 40.5 and H+ = 5.5) fluctuations below the wires were indeed
reduced. However, fluctuations over the wires were increased as was the net drag on
the wires/flat surface. Above the wires the various mean profiles resembled the same
profiles taken over a corresponding riblet array. Goldstein et al. (1995) concluded
that the effects found indicate that widely spaced wires deflect cross-flow both up and
down – above and below the wire.

We will consider turbulent flow over isolated wires with heights of H+ = 9.2 and
15.3 (9th and 11th grid sites above the wall for cases 10 and 11, respectively). The
flow domain size and resolution are initially the same as were used in case 5. The
top and bottom flow boundaries are ordinary no-slip surfaces. The wires are created
with the force field technique simply by applying the body force to a string of grid
sites where the wire is desired. The force field is interpolated to the grid sites with a
narrow Gaussian distribution (ε in table 1). Thus, the effective width of the wire is
about two grid sites or about 4l∗.

Figures 11 and 12 present some remarkable results. Over both wires one again finds
the secondary flow like that found over the single riblet: a vortex pair surrounding
the element creating upwash directly over the wire and downwash on either side. One
finds, however, that there is also now a much larger tertiary vortex pair of opposite
sign surrounding the original secondary vortex pair. The vortex structures near the
H+ = 9.2 wire are very similar to those near the H+ = 8.9 riblet. The tertiary flow
appears to restrict the development of the secondary pair, particularly for case 11 in
which the tertiary pair becomes huge (figure 12a). Above the wire, in the region of
upwash of the secondary flow, there are large turbulent fluctuations. On the other
hand, the fluctuations seem reduced in the regions between secondary and tertiary
vortices where the flow is down toward the plate. The Reynolds shear stress, 〈−uv〉,
is enhanced in a mushroom-shaped region above the wire, a region closely associated
with the secondary vortex pair alone. The other two Reynolds stresses also show clear
patterns linked only to the secondary flow: 〈−uw〉 has a dipolar pattern while 〈−vw〉
appears predominantly dipolar with some quadrupolar nature due to two smaller
lobes below the wire. The large dipolar 〈−uw〉 pattern seen about the H+ = 9.2 wire
seems squashed down by the much stronger tertiary flow near the H+ = 15.3 wire.
There do not appear to be other appreciably enhanced regions of Reynolds stress
associated with upflow in the tertiary vortex pair.

All of these patterns agree remarkably well with those found for the single isolated
riblet (case 5) except for the presence of the particularly prominent tertiary mean flow.
This agreement, notably between similarly sized cases 5 and 10, appears to confirm
the idea that a wire can be used to model many of the effects of a riblet and that
most of the effect of an isolated riblet comes from the riblet crest.

The mean streamwise velocity contours in figures 11(a) and 12(a) show a thickening
of the boundary layer over the wire but it is not clear if this is simply due to the
no-slip wire projecting into the flow or due to the secondary vortex pair upwash.
There is, however, a clear effect due to the tertiary vortex pair: the boundary layer
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is thickened in regions of mean upwash and thinned in regions of downwash. The
mean drag of the wire/wall is increased by 4.5 ± 1.5% and 19.4 ± 3.4% for the low
and high wires, respectively.

But are such large tertiary vortices reasonably modelled in a box of a span only
slightly wider than the vortices themselves? And what about the adequacy of the
spatial resolution? To address these questions we re-ran these two simulations with
the width of the box (Lz) increased by 66%. The number of grid cells was held
constant so that the resolution of the flow was reduced by 66% in the z-direction. As
seen in the case 12 and 13 data in table 1, the secondary and tertiary flows are nearly
the same as those found in the narrower domain. In fact, all of the various contoured
mean properties (not shown) are virtually unchanged by the change in domain size.
The differences observed are minor and are felt to be due to insufficient statistical
sampling to fully capture a weak secondary flow. One concludes that the boxes used
are sufficiently large and the resolution is probably adequate to capture the physics
discussed.

4.3. Turbulent flow along isolated fins: what causes secondary flow?

Secondary flows have thus been found to be associated with isolated riblets and
wires which project well into the viscous sublayer but are weak in slots which are
submerged below the mean sublayer height. Additionally, the secondary flow vortices
appear strongly associated with enhanced turbulent activity. But what causes these
vortices? It may be that tilting of the mean vorticity components Ωy and Ωz along

the sides of the riblet or wire by the mean shear (Ωy∂U/∂y + Ωz∂U/∂z) produces
the streamwise secondary vortices, and the mean shear and vorticity in a single slot
valley is too low (or the two terms nearly cancel) to cause strong vortices. Or perhaps
the vortices are Prandtl’s secondary flow of the second kind found in turbulent flow
through channels of non-circular cross-section. In the classic corner flow problem
the interaction of the Reynolds stresses with the distorted mean isotachs is thought
to cause the secondary flow. The mechanisms producing such secondary flows were
reviewed by Demuren & Rodi (1984) and Gessner (1973) and investigated with DNS
by Huser & Biringen (1993). We will propose a numerical experiment to provide a
useful alternative physical explanation of such flows.

Consider first the turbulent flow along a vertical fin (case 14), a situation very
much like that of flow along a taller case 5 riblet. The fin is created as was the
riblet: the force field is applied to bring the flow to rest on a sheet of grid points
at y+ = 14.4 and below. As before, the force field has a narrow spatial Gaussian
distribution so the effective width of the fin is about two grid sites or about 4l∗.
All of the contours (figure 13) are very much the same as those over a single riblet.
A fairly strong secondary flow is also found (figure 13a). The calculation was done
in a box having a width like that used in the wide-box wire simulations (width =
600l∗) yet no tertiary flows are seen which are clearly distinct from the vestiges of the
ordinary buffer layer vortices. A much longer run would be required to clarify any
weak tertiary flow. The main point is that the fin can be viewed as a riblet of nearly
zero width.

Suppose we consider a fin of the same size but instead of making it a no-slip surface
we permit fluid to slip in the x- and y-directions (case 15). The force field is only
applied in the z-direction in order to prevent flow through the fin and would deflect
spanwise flow up over the fin. Such a surface does not generate vertical vorticity (Ωy)
along its sides which can be tilted into the x-direction. The surface also does not
retard the streamwise velocity so in a laminar flow the streamwise velocity contours
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would remain flat and continuous right through the fin. There would thus be no
tilting of the spanwise vorticity (Ωz) along the fin since the mean shear stress ∂U/∂z
would be zero. Hence, the vortex tilting mechanism would not apply. Similarly, a
secondary flow mechanism associated with a distortion of the primary stress field is
not possible. The damping fin does not produce the mean primary flow which can be
used, as Prandtl did, to explain secondary flow of the second kind.

Yet, figure 14 shows that this w-damping fin produces a secondary flow which is,
in fact, stronger than that over the regular fin as measured by V̄ max/u

∗ (table 1). The
streamwise and wall-normal r.m.s. velocities are little different from those of figure 13
except very close to the fin. The w′ contours look almost the same over the two types
of fins. It is important to note that over the w-damping fin the streamwise velocity
contours in figure 14(a) arch up much as they did over the regular fin. That is, in this
case the secondary flow is causing the distortion of the primary flow isotachs rather
than the other way around.

So then what does cause the secondary and tertiary flows? First, recall that closely
spaced riblets produce nearly negligible secondary flows and that such riblets can
produce their drag-reducing effect by damping cross-flow fluctuations (Goldstein et
al. 1995). As riblets of fixed size are spaced more widely, they are probably less
effective in damping w fluctuations; the cross-flow can penetrate into the valleys
and then wash over the next riblet. Many of the effects of a riblet, including the
formation of secondary flows, come from the riblet crest rather than the valley or
the no-slip/no-through-flow condition. And, from figure 14, it appears that the only
feature needed for secondary flow to occur is that there are some w fluctuations
and that the element, whatever it is, can damp the fluctuations and deflect them
vertically. Thus, the mechanism we are looking for may be a strictly two-dimensional
phenomenon in the (y, z)-plane.

5. Two-dimensional mechanism of secondary flows
We propose that the secondary flows are caused by the upward deflection of

spanwise fluctuations and perhaps by flow separation. In a turbulent boundary layer
there will be spanwise fluctuations having a range of frequencies and amplitudes
caused by the various flow structures buffeting the near-wall region. The character
of the spanwise flow is indicated by a Reynolds number based on a representative
cross-flow velocity and the height of the element and a Strouhal number based on
a representative frequency. If the perturbations are strong (or simply the riblet is
truly sharp), the cross-flow can separate and the shed Ωx vorticity will roll up into a
concentrated vortex on the leeward side of the riblet while the flow on the windward
side is still attached and smooth. Positive and negative fluctuations are equally likely.
During a −w fluctuation there will be −Ωx oriented vortices on the left-hand side
of the riblet and during a +w fluctuation +Ωx vortices on the right-hand side. Both
vortices create upwash over the riblet crest and a time average of the situation would
show the presence of a mean secondary flow.

Even at low Reynolds number the cross-flow produces a concentrated outflux of
Ωx near the riblet tip where the tangential surface pressure gradient is large and

† Prandtl also later wrote, in reference to secondary flow in turbulent flow in channels of
non-circular cross section: ‘The observed facts, however, justify the idea that at places where the
shearing stress at the boundary is greater, fluid is impelled toward the centre of the channel as a
result of turbulence, and on the other hand at places where the shearing stress is less (e.g. at the
corners), fluid flows from the inside towards the wall’ (Prandtl 1952, p. 149).
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Y

z

Periodic flow

Shear-free top surface

No-slip lower surface
Single ribletPiston or region of

oscillating force

Figure 15. Schematic view of the numerical simulation of piston-driven two-dimensional flow.

this vorticity can then diffuse and convect (but not clearly separate) into the flow.
The time average of the oscillating flow would show the presence of mean vorticity
concentrations on either side of the riblet.

5.1. Sinusoidal spanwise motion

We can test these ideas with the following numerical experiment. Consider a two-
dimensional domain analogous to a single (y, z)-plane from a turbulent simulation.
A single element is placed on the lower surface and a uniform oscillating flow in
the z-direction is driven by a piston on one side of the domain. The flow is periodic
(Fourier) in the z-direction and the piston is created with the force field simply by
specifying the desired piston velocity in several columns of cells far from the element
(Goldstein, Adachi & Izumi 1993a). The situation is represented schematically in
figure 15. For sinusoidal oscillations the piston velocity, wpist(t), is characterized by
a specified maximum amplitude, wmax, and frequency, ω: wpist(t) = wmax sin(ωt). We
define an element Reynolds number by Ree = wrmsh/ν and a Strouhal number by
St = ωh/wrms, where wrms is the root-mean-square spanwise sloshing velocity. The
Stokes layer on the flat wall has a 99% thickness of Hstokes = 4.5(2ν/ω)1/2 so a related
third non-dimensional group of potential interest would be h/Hstokes.

The calculation begins with no flow in the domain. The piston is moved through
several cycles (generally 10 for lower Ree and 20 for higher Ree) before the flow is
nearly periodic. Data are then taken over the last cycle. The grid size used is 128×512
in y and z, respectively, and h/yl/2 = 0.0762 so a single riblet is resolved with 27
surface points. Figure 16 illustrates the vorticity dynamics over half a cycle for a fairly
high Reynolds number, low Strouhal number (Ree =53.9, St =.339, h/Hstokes = 0.671).
This is one of the more complicated situations because the vortices which are shed
travel widely and do not decay rapidly. In the initial frame (t = 0) there are vortices
present from previous cycles in the periodic sequence and frame t = π/ω represents
the same flow as t = 0 but a half-cycle later. As the flow moves right (t = 0 to
t = π/4ω), a concentrated region of positive vorticity (B) is swept off the windward
side of the riblet and accumulates on the leeward side. Once there, the +Ωx vortex B
begins inducing the production of negative vorticity on the leeward side (t = π/2ω to
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y

z

Figure 17. Time-average (mean) secondary and tertiary flows for the run presented in figure 16.

t = 3π/4ω). As the far-field flow reverses (starting at t = π/ω) the B patch of positive
vorticity completely separates from the rib. This is as far as the half-cycle shown in
the figure illustrates. One can continue to follow the mirror image sequence starting
back at t = 0 with negative vortex A. The separated vortex A is convected to the right
as the Stokes layer vorticity becomes positive. The patch of negative vorticity (A)
then scoops up some of the Stokes layer vorticity into patch C (t = π/ω) and forms
a propagating vortex pair. The scooped circulation (C) is weaker than the scooping
vortex A so the new propagating pair will follow a curved counter-clockwise trajectory
out and away from the riblet, eventually looping around into a larger merged vortex.
The time-average flow over one complete cycle is seen in figure 17.

A careful consideration of the sequence of events explains the origin of the sec-
ondary and tertiary vortex pairs seen in figure 17. The secondary flow is caused by
the vortex initially shed from the rib tip (vortex A at t = 0 and vortex B at t = π/ω)
and the dramatic upwash the vortex causes as it is blown backwards immediately
upon flow reversal. In the turbulent simulations this upwash causes vertical mixing
of streamwise momentum and presumably explains why the upwash region over an
element is closely associated with large values of 〈−uv〉. The tertiary flow is now
seen to be a result of the accumulation of these shed vortices (and their Stokes layer
counterparts like vortex C) on the opposite side of the rib. Preliminary experimental
flow visualization studies confirm this sequence of events. These mean flow results
clearly resemble those found in the turbulent simulations.

In a turbulent flow the situation would not be as clean. We can better evaluate
the effects by exploring a range of the Reynolds and Strouhal number parame-
ter space. Generally, as Ree is increased, the individual vortices do not diffuse as
rapidly and the mean secondary/tertiary flow becomes stronger. When the frequency
of oscillation (St) is increased, the fluid does not slosh as widely to the sides dur-
ing a cycle, the vortical activity is constrained closely about the riblet tip, and the
tertiary flow becomes negligible. Figure 18(a) illustrates the mean location of the
secondary and tertiary vortex cores for a range of Ree and St values. As Ree in-
creases the secondary cores move down while the tertiary cores generally move up.
As St values increase the secondary and tertiary core locations move down and
closer to the riblet. In figure 18(b) are shown results for the turbulent runs taken
from table 1 and experimental and numerical results from various sources. We see
that tertiary flow is only found in simulations of turbulent flow over isolated el-
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minimum and maximum Reynolds numbers. Consecutive symbols on a given line correspond to a
change in Ree by a factor of two. (b) Mean positions of secondary and tertiary vortex cores for
select turbulent DNS, experiments and w21 sloshing runs normalized by the element height.
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ements. For closely spaced riblets the secondary cores lie quite close to the riblet
tips. In fact, considering the different riblet sizes and shapes, the agreement be-
tween the various results for turbulent flow over closely spaced riblets is remarkably
good. For all the isolated elements except the H+ = 15 wire, the secondary cores
are located above and to the side of the element. It may be that the H+ = 15
wire is sufficiently far from the wall that cross-flow can easily pass below the wire
and lower the mean secondary core location. In comparing the data for isolated
riblets in figures 18(a) and 18(b), one finds that in fully turbulent DNS the lo-
cations of the mean secondary and tertiary cores reflect a much lower Strouhal
number than that expected based on a cross-flow velocity energy spectrum over a flat
plate.

Figure 19(a,b) illustrates how the strength of the secondary flow varies with Ree
and St. In the figure Vmax is the maximum upflow velocity over the rib crest while
Vmin is the minimum downflow velocity to the side of the riblet in the downwash
created between the secondary and tertiary flows. Stronger mean flows are clearly
associated with larger Ree and smaller St values.

5.2. Pseudo-turbulent spanwise motion

What Ree and St correspond to an actual boundary layer? In a boundary layer there
would be a range of frequencies present, each characterized by a different amplitude.
Moreover, the perturbation element might itself alter the spectrum of spanwise
fluctuations. Suppose, however, to approximate the effect of the near-wall spanwise
motion in a turbulent boundary layer, we extract from a numerical simulation the
actual spanwise velocity at some point above the wall in a flat-plate boundary layer.
We then use that velocity trace as the specified velocity of the piston in the two-
dimensional simulations. The height above the wall where the data are taken will
determine the amplitude and frequency of the fluctuations. The height chosen was 21l∗

corresponding to an wrms of 0.81u∗. This velocity trace is termed w21. A lower height
in the boundary layer (like the height of the riblet tip) experiences lower-amplitude
fluctuations with a similar frequency distribution. But based on the studies presented
above, it was felt more practical to use the slightly higher-amplitude fluctuations of
21l∗. The riblet Reynolds number of this flow is 7.7. Most of the significant spectral
energy is roughly in the range 0.19 < ω < 4.40 so a rough range of effective Strouhal
numbers would be 0.56 < St < 13.2. Thus, the w21 velocity trace will produce Ree
and St values corresponding to the range explored by the previous periodic forcing
studies.

The mean vortex core locations which develop due to w21 piston motion for each
element used in the turbulent simulations of §§ 3 and 4 are seen in figure 18(b).
Generally, no tertiary flows are found and the secondary cores lie close to the element
tip(s). The strengths of these w21 induced flows are summarized in table 2. A summary
of the observations for each element follows.

5.2.1. Single riblet

For the individual riblet, although a secondary flow develops due to w21 cross-flow,
it is more confined than in the turbulent runs but of roughly the same peak upflow
velocity over the rib crest: Vmax/w

′
21 = 0.27 compared to Vmax/(0.81u∗) = 0.40 for

case 5. One might have expected modest agreement at best because the w21 velocity
profile is not the same as the actual cross-flow experienced by the riblet in case 5. No
substantial tertiary flows are seen with the w21 piston motion.
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Figure 19. Strength of the induced secondary flow near a single riblet subject to sinusoidal cross-flow
for various Ree and St. (a) Maximum mean vertical velocity found over the tip of the riblet. (b)
Minimum mean vertical velocity found in the downwash regions to the sides of the riblet.

5.2.2. Riblet array

If we apply the w21 velocity trace to a periodic array of closely spaced cusped
riblets of the geometry used in §3.1, animations show that only tiny and weak regions
of vorticity form near the rib tip and then diffuse quickly; the mean flow has only
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Run Vmax/w
′
21 Vmin/w

′
21

Single riblet 0.271 −0.061
Close riblets 0.220 −0.134
Solid fin 0.303 −0.071
Damping fin 1.083 −0.20
Single slot 0.366 −0.394
Wire at h/yl/2 = 0.0761 0.222 −0.0362
Wire at h/yl/2 = 0.1181 0.291 −0.0209

Table 2. Strength of mean vertical flows near elements subject to w21 cross-flow.

small secondary vortices in agreement with what was found near the case 2 and 3
riblets. Vortices with a tertiary flow orientation exist deep in the riblet valleys but are
hardly discernible.

5.2.3. Single fin

The w21 sloshing flow over a single fin produced essentially the same secondary
flow results as found in §5.2.1. The strength of the secondary flow upwash is also
similar to that found in the fully turbulent run: Vmax/w

′
21 = 0.30 compared to

Vmax/(0.81u∗) = 0.43 for case 14. If a damping fin is used like that in case 15, the
same mean secondary flow pattern is found but the strength of the vortices is increased
appreciably to Vmax/w

′
21 = 1.08. The increased secondary flow strength right over the

fin probably occurs because the damping fin does not apply a vertical viscous drag
to slow the vertical flow. Both types of fin lack a clear tertiary flow probably due to
the relatively high frequency of the w21 oscillations: the vorticity shed by the fin tip
hardly has time to move off to the side before it is swept back. Hence, the secondary
vorticity only can cause very weak tertiary vortices right near the fin base.

5.2.4. Slot

During sinusoidal sloshing flow over a slot at modest values of Ree and St, flow
separation can occur and a single vortex fills the slot. When the flow reverses the
vortex weakens and rises a bit out of the cavity before diffusing completely. The
mean flow consists of a pair of counter-rotating vortices in the slot with downflow
along the slot centreline and no tertiary vortices. With a high Ree (= 108) and small
St (= 0.338), as it is washed out of the valley the shed slot vortex can remain intact
long enough to scoop up Stokes layer vorticity and form tertiary vortices. The w21

velocity field also produces a moderately strong vortex pair in the slot having the
cores in line with the slot edges. The presence of such strong secondary flow in a
slot is somewhat misleading, however, because in the fully turbulent DNS the single
slot is submerged at least 21 wall units below the relatively strong w21 oscillations
occurring in the buffer layer.

5.2.5. Wire

Finally, if a single wire is used with the w21 velocity trace only very small and mod-
erately weak secondary flows are found immediately adjacent to the wire. Additional
vortices with the tertiary orientation are seen below the secondary vortices, hugging
the wire. The perturbations induced by the wire do not appear to interact much with
the flat surface and, hence, the tertiary and secondary vortices are nearly symmetric
and of the same strength. The huge tertiary vortices found in the turbulent runs are
absent in the w21 sloshing case.
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6. Summary and discussion
The virtual surface approach was used to simulate fully turbulent flow over riblets

spaced by various amounts. Grid resolution studies in fully turbulent simulations con-
firmed that the physical features of the flow were grid resolved. The mean velocity,
fluctuating velocity and Reynolds stress contours for the different cases were com-
pared. Based on these results, a simple model for the increase in drag for widely spaced
riblets can be described: as the spacing between riblets is increased, the riblets damp
the cross-flow fluctuations less and the cross-flow in the valleys becomes stronger (e.g.
compare figures 5d, 6d, and 7d). Riblets then no longer provide a cross-flow shield for
their neighbours. Strong cross-flow interacts with the more isolated riblets to produce
a secondary flow which is associated with vertical mixing (figures 5e, 6e, and 7e) and
increased drag.

To test this idea and determine the origin of the secondary flow, turbulent flow sim-
ulations were performed over single slots, wires and fins. While single slots produced
only weak secondary flows because they were submerged so far below the turbulence,
wires produced strong secondary and tertiary flows. Together these simulations show
that the riblet crests, rather than the valleys, are most responsible for the secondary
flow. The w-damping fin results showed that the secondary flows were not easily
explained by tilting of Ωy or Ωz vorticity by the mean shear or by Prandtl’s secondary
flow of the second kind.

It was proposed that the secondary flows are physically explained as a two-
dimensional feature involving spanwise sloshing of the flow over the element(s)
examined. The sources of the secondary and tertiary flows were explained in terms
of the two-dimensional vorticity dynamics. This mechanism was then examined for
single riblets for a range of Reynolds and Strouhal numbers in a two-dimensional
periodically oscillating flow. If the two-dimensional oscillating flow was made to
resemble that in a turbulent boundary layer at y+ = 21, the mean flows over the
riblets and other elements reflected the high frequency of such a driving flow.

In some of the cases discussed, the secondary flow is probably best characterized as
a form of Prandtl’s secondary flow of the third kind (Prandtl 1952, p. 149) discussed
in greater detail by Schlichting (1979, p. 428). Schlichting points out that a flow
caused by small periodic oscillations of a body (St� 1) “induces a steady, secondary
(‘streaming’) motion at a large distance from the wall as a result of viscous forces”
although the magnitude of the streaming motion is independent of the viscosity. The
resulting secondary motion is quite similar to that discussed above in the (y, z)-plane.
The present simulations show a clear dependence on viscosity. Hence, the analogy
with Schlichting’s derivation is only partial.

There are two important differences between the piston-forced two-dimensional
oscillations and those which occur in a turbulent boundary layer. Whereas the piston
maintains a prescribed amplitude and frequency for the velocity field, surface textures
below a turbulent boundary layer can locally alter the spanwise velocity. This leads
one to believe that the elements tested in the turbulent boundary layer probably
altered the spanwise sloshing velocities which in turn created the particular secondary
flows. In addition, the turbulent boundary layer has an effective eddy viscosity that is
greater than the molecular viscosity of the two-dimensional model.

Improving the drag-reducing utility of riblets or similar elements by increasing
their spacing is prevented by the vertical stirring of streamwise momentum induced
by spanwise motion and the coincident formation of secondary flows. The results
presented here indicate that to design better surface textures one may want to disrupt
the formation of secondary flows. It may also be useful to use simple two-dimensional
sloshing flow simulations in the design process.
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Alternatively, one may view the use of such elements as a method of redirecting
turbulent boundary layer spanwise fluctuations into a mean wall-normal line jet along
the crest of the element. The idea of having an element that can rectify turbulent
motion into directed mean motion is interesting. Perhaps such a device would find
application in a heat transfer process or as a low-profile boundary layer turbulator.
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The University of Texas at Austin. The work was supported by the Chung Cheng
Institute of Technology, Taiwan, ROC, by a grant from Cray Research Inc., and
by a computer time grant from the National Partnership for Advanced Computing
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